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ABSTRACT 

We describe a new method for analyzing, classifying, and 
evaluating filters, which can be applied to interpolation filters, and 
derivative filters. Our analysis is based on the Taylor series expan- 
sion of a convolution sum and some assumptions on the behavior 
of the data function. As a result of our analysis, we derive the need 
and the method for normalization of derivative filter coefficients. 
As an example, we demonstrate the utilization of our methods to 
the analysis of the class of cardinal cubic filters. Since our tech- 
nique is not restricted to interpolation filters, we can show that the 
Catmull-Rom spline filter and its derivative are the most accurate 
reconstruction and derivative filter among this class of filters. We 
show that the derivative filter has a much higher impact on the ren- 
dered volume than the interpolation filter. We demonstrate the use 
of these optimal filters for accurate interpolation and gradient esti- 
mation in volume rendering. 

1 INTRODUCTION 

Reconstruction of a continuous function and possibly its 
derivatives from a set of samples is one of the fundamental opera- 
tions in visualization algorithms. In volume rendering, for 
instance, we must be able to interpolate the data set at arbitrary 
locations to evaluate the rendering integral. The gradient (or first 
derivative of the function) is important in classifying the volume 
and applying a proper illumination model [5][12]. 

Assumptions - We denote by fit) a continuous function (the 
signal) which is sampled into the discrete function fk = f(W) , 
where T is the sampling distance and k is an integer. In computer 
imagingflr) is not available; we have only fk, which is the discrete 
image we need to manipulate. An important assumption we make 
is that the continuous signal f is sampled at or above the Nyquist 
frequency [17][21]. Inherent to this assumption is that the underly- 
ing function is bandlimited and hence analytic, i.e., all derivatives 
exist at all points. In fact, signals commonly found in volume visu- 
alization are bandlimited because, during the process of acquiring 
digital images, acquisition devices (e.g., cameras, scanners) per- 
form a filtering operation and bandlimit the function. Images gen- 
erated by numerical simulations of physical phenomena (common 
in disciplines such as computational fluid dynamics) are also band- 
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limited because, typically, robust numerical solutions can be 
obtained only if the algorithm incorporates a smoothing step. 
Finally, all rendering and scan-conversion algorithms, in order to 
provide antialiased images, typically employ a filtering step that 
bandlimits the image. Malzbender presents similar observations 
for volumes obtained through medical acquisition devices (e.g CT, 
MRI) [ 141. Much has been written about the reconstruction of sam- 
pled data sets in the fields of signal processing [ 171 (1D data) and 
image processing [3][6] (2D data), applied numerical mathematics 
r11[1w211. 

Motivation - Before resampling, we must ret nstruct fromfk 
the continuous function, which we denote by I (t) . Here, h P 
denotes the low-pass interpolation filter. Before we can classify or 
apply any shading method to our data set, we need to reconstruct 
the derivative of f(t) from the known samples fk. We denote the 
derivative of the contin ous function f(t) by f (t) and the recon- 
structed derivative by ry r (t) Here, d denotes the high-pass deriva- 
tive filter. The filters h and d are usually chosen without much 
thought towards the adverse effects of the filter performance. The 
trilinear and central difference filters are often used for the recon- 
struction of the underlying function and its derivative, because 
they are inexpensive, However, the use of the trilinear filter results 
in blurring and aliasing in the final image, while the application of 
the central difference filter results in the loss of fine details. 

With recent advances in hardware it is now possible to con- 
sider the use of better, albeit computational expensive filters. As a 
result, there exists a need for quantitative and qualitative methods 
to evaluate the goodness of the interpolation and derivative filters. 
Quantitative methods are useful since they provide an error metric 
to compare and contrast filters. Also, they can lead to the selection 
of optimal filters. On the other hand, qualitative methods allow the 
classification of the filters into categories and may lead to the 
application of further metrics e.g perceptual. 

For our evaluation methods, we also require that the function 
is included in the evaluation. Also, the evaluation should be con- 
ducted in the spatial domain instead of the more cumbersome fre- 
quency domain. 

With this background and assumptions in mind we summa- 
rize, in Section 2, what previous research has been done in this 
field. In Section 3 we introduce our concept of Taylor series expan- 
sion of the convolution sum. Because of their importance, we dn- 
gle out the case of interpolation and derivative filters. In Section 4, 
we illustrate an application of our general methods to the group of 
cardinal cubic interpolation and derivative filters. In Section 5 we 
show some experimental results, and, in Section 6 we suggest steps 
for furthering this research. Finally, in Section 7, we summarize 
our findings. 



2 RELATED WORK 

Researchers have generally studied and evaluated filters in 
frequency domain. One of the earliest comparative studies of inter- 
polation filters for ima.ge resampling was done by Parker et al [ 191. 
They compared nearest neighbor, linear, cubic B-Spline, and two 
members of the class of cardinal cubic splines, through a discus- 
sion of their respective frequency spectra. They found the Catmull- 
Rom spline to be superior. 

A thorough study of cardinal cubic splines in frequency 
domain was performed by Park and Schowengerdt [18]. They 
found that the optimal interpolation filter of this class highly 
depends on the signal to which it will be applied. For most applica- 
tions, the parameter CL will be around -0.6 or close to the Cat- 
mull-Rom spline, for which the parameter is -0.5. Keys [1 I] 
showed that the latter filter is optimal, within the class of cardinal 
splines, in the sense that it interpolates the original function with 
the smallest spatial error. By using a Taylor series expansion of the 
convolution sum, he found that the Catmull-Rom spline interpola- 
tion filter has an error ;proportional to the cube of the sampling dis- 
tance. 

Mitchell and Netravali [ 161 introduce a more general class of 
cubic splines, which we refer to as BC-splines. Cardinal cubits are 
a subclass of these cubits. Mitchell and Netravali conducted a 
study of more than 500 sample images, classifying the parameter 
space into different regions of dominating image artifacts such as 
blurring, ringing, and anisotropy. They also found, by using a Tay- 
lor series expansion, that filters in which B + 2C = 1 are most 
accurate numerically and have an error proportional to the square 
of the sampling distance. Neither Keys nor Mitchell and Netravali 
approximate the actual error of their filters. 

A recent comparative study by Marschner and Lobb [ 151 pro- 
poses the use of different metrics for different image artifacts. Spe- 
cifically, they introduce metrics in the frequency domain to 
measure the smoothing, postaliasing, and overshoot of an interpo- 
lation filter and found the windowed Sine filter to behave the best. 
Unfortunately, their metrics do not depend on the actual function to 
be reconstructed, an issue that Park and Schowengerdt found to be 
crucial for frequency analysis. 

All the aforementioned approaches neglect to take derivative 
filters into account in their studies, a precondition to compare ren- 
dered and shaded imag,es. A good survey of existing derivative fil- 
ters can be found in the paper by Dutta Roy and Kumar [7] in 
which they describe the design of maximal linear filters in fre- 
quency domain. Their filters can be adapted to various frequency 
ranges, an important consideration for practical applications. 

Goss [9] extends the idea of windowed filters to derivative fil- 
ters. He uses a Kaiser window for the ideal derivative filter, which 
is shown, e.g. in [2], to be the derivative of the Sirzc filter and 
which we denote as the Cost filter, but does not explain why this 
windowing is necessary and why a Kaiser window will work rea- 
sonably well. The work: by Bentum [2] uses the cardinal cubits as a 
basis to develop derivative filters. Although he shows different 
plots of these filters for different parameters, he does not analyti- 
cally compare these different filters. 

While most of the existing research concentrates on frequency 
analysis, we believe that the spatial analysis is just as important. If 
the local error can be k.ept small, then the effect of image artifacts 
also diminishes. In fac.t, we find that the results of Keys’ spatial 
analysis are nearly identical to the results of the frequency analysis 
done by Park and Schowengerdt. 

In this work we develop tools for the spatial analysis of inter- 
polation and derivative filters. We show the importance of the nor- 
malization of the filter coefficients and how this step is performed. 
Specifically for the class of cardinal splines, we derive known and 
new results in Section 4 using our new spatial method. 
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3 TAYLOR SERIES EXPANSION OF THE 
CONVOLUTION SUM 

To reconstruct a continuous function f(r) or its derivative 
f (t) from a set of sampled points fk we compute a weighted 
average of these samples. This process IS also known as convolu- 
tion of the sampled signal with a filter which determines the 
weights. If we convolve the samples with a continuous interpola- 
tion filter h, we reconstruct the original function At). Simil.arly, if 
we convolve the samples with a continuous derivative filter d, we 
can reconstruct the nth derivative of the original function. We 
denote the re:sult by f(r) , where w denotes the kind of filte:r used. 
This can be written as: 

Now fk represents the samples of the original function f(t) at 
the values kT, where T is the sampling distance. Since we assume 
that all the derivatives off(t) exist, we can expand fk = AkT) in a 
Taylor series infaround t. Therefore, we write: 

Iv f’“‘(t) 
(N+ UC5 ) 

fk =AkT) := c -yj-Wl)"+f~N+l~; (kT- t) cN+ I) 
II=0 

where Sk E [I, kTJ . Substituting this Taylor series expansion 
into Equation (1) and reordering the terms according to the deriva- 
tives off(r), we can rewrite Equation (1) as: 

jfw = 2 a,w(t)f(“) (t) f r; (t) (2) 
n=O 

where the coefficients u:(t) and the remainder term ,vI( t) 
are: 

a;(t) = $ 5 (kT-t)“w$-k) 
k=--m 

i f(N+‘)(tk) (kT-t) (N+l),(+) 
k=-ce 

This gives us the impression that the values of the coefficients 
CJ~ and the remainder term r; depend on t. This is scmewhat mis- 
leading. Let us first have a look at the coefficients qn . For practi- 
cal reconstructions of signals, we do not use an mfinitely long 
filter. Therefore, a filter w has a finite filter length that we call M. 
The filter w is defined to be zero outside the interval I-M, Ml. Next, 
we observe that we are evaluating the filter w at points exactly one 
unit length apart. These weights are applied to an n-th degree poly- 
nomial (kT - t) n sampled also at points exactly T apart, centered 
at t. Therefore, it makes sense to rewrite t in terms of an offset z 
from T, written as: 

t= (i+QT,whereOlz<l,andiEZ 
Therefore, the coefficients a: can be expressed in terms of 

this offset: 

i+M 

UIi,T(Q = Ur((i+z)T) =-$ C( (k-i)T-zT)“w(T- (k-i)) 
k=i-M 

which can be simplified to: 



M 

k=-M 

(3) 

Here, we clearly see that a: depends not on t itself, but rather 
on the distance to the next sampling point (expressed by ‘t ). This is 
because z tells us how ‘far away’ a reconstructed value is from an 
already known sampled value. Therefore, we canwquantify how 
‘hard’ the reconstruction process really is. Since a, i T does not 
depend on i and, T is set by the data acquisition step (and therefore 
cannot be changed during the reconstruction proczss), we will drop 
the appropriate subscripts in the expression for an . 

If we do the same analysis for the remainder term rz, we 
find: 

2 f(N+‘)(ck $(k-7) (N+‘)w(z-k) (4) 

where ek, i E [t, (k + i) T] Finally, the convolution sum in 
Equation (1) can be expressed as: 

Our objective is to quantify and classify the error occurring 
du$ng thewreconstruction process. We can do this by comparing the 
a,, and rN of various filters w. The pri;cipal idea is to choose the 
largest N such that all the coefficients an evaluat; to zero, with the 
exception of LZ~ for interpolation filters and a,,, for m-th order 
derivative filters. This coefficient should evaluate to one, since we 
want to reconstruct the continuous function or its m-th order deriv- 
ative respectively. Choosing the value of N in $is way, the recon- 
struction error is simply the remainder term r,,, . We observe that 
the coefficients depend solely on the underlying filter w. This leads 
us to a conceptually ideal way to compare and classify different fil- 
ters. We can put all the filters chzracterized by the sa 
class. The reconstruction error r,,, 1s o ,tJh order 0( 

bJ 

F 
+Y in one 

) That 
$ 

l-3 

s that for typical applications, rN will be smaller than 

‘N ’ iff N, > NZ . Therefore, in gene I, e prefer filters in a class 
it largest N. The filters in class (N-l} we simply call N-th degree 

error filters (N-EF) to comply with standard nomenclature in 
numerical mathematics. We can further di ti 

II 

guish among filters in 
the same class using their absolute errors rz 

This classification is very important and should strongly influ- 
ence the choice of a filter for a given application. A N-EF will 
reconstruct a polynomial of (N-l)th or lower degree (the original 
function as well as its derivative) without any errors. In many 
applications, the underlying data can be sufficiently modeled with 
lower degree polynomials. Therefore, a 3EF or 4EF may be suffi- 
cient. 

This classification scheme is important in determining the suf- 
ficient and necessary resolution of voxelization (discretization) 
algorithms. One restriction might occur, when the researcher can- 
not change the resolution, e.g. the resolution of an MRI scanner. In 
such cases, one needs to consider the error terms quantitatively 
only, because the placement of a filter in a N-EF group depends on 
the asymptotic behavior of the filter error. Therefore, one can find 
examples where, for some T, a specific filter in the 2EF group will 
perform better than a specific filter of the 3EF group. 

3.1 Continuous Interpolation Filters 
In the case of an interpolation filter h, we need to require that 

CL: be exactly one. This requirement is also recommended by 
Mitchell and Netravali [16]. To achieve this, we simply normalize 

the filter coefficients by dividing them by uz Without this normal- 
ization step, we cannot rely on the accuracy of the interpolated 
function. 

3.2 Continuous Derivative Filters 
As with interpolation filters, we also need to normalize a 

derivative filter d. For simplicity, we will concentrate on the deriv- 
ative filter for the reconstruction of the first derivative f(t) of the 
original function. Higher order derivative filters can be treated sim- 
ilarly. 

We are reconstructing the derivative of the function instead of 
the function itself and therefore need to set the coefficient in front 
of f(t) to one. That yeans we must normalize it by dividing the 
filter coefficients by at . This is less known, yet very important for 
a reliable normal estimation. The reconstruction of derivative> is 
still more complicated than this; we also need to require that a0 is 
zero! In fact, if this condition does not hold, the result is useless. 
As an example, let us examine the Cost filter, the ideal derivative 
filter. It has been shown that the ideal derivative filter is simply the 
derivative of the ideal interpolation filter Sine [2]. Therefore, we 
have 

-0.1 

-0.2 

-0.3 

offset 

FIGURE 1. We computed the normalized coefficient 
ud in terms of the offset to the next sampled value. 
ti e find it only to be zero for t = 0.5 

i 

0 
Cost(t) = Sine’(t) = 

t=O 
1 
( 

sin (nt) ; cos (nt) - 7 
> 

t#O 

The Cost filter (like the Sine filter) is an infinite filter and 
therefore not applicable. In the case of the Sine filter, we could use 
a truncated Sine filter, which is equal to the Sine filter for all 
It] I M and zero outside of this interval. In the case of the Cost fil- 
ter, we cannot simply use a truncated Cost filter, since ar will not 
be zero. To demonstrate this, let us set M to three, which results in 
six filter weights for the reconstruction. This is a rather expensive 
figer. I~J Figure 1 we plotted the normalized coefficient 
ao(z)/ul(z) . We found this function to be varying between -0.4 
and 0.4. Notice the behavior of this specific truncated Cost filter on 
a linear function as shown in Figure 2. We would expect a function 
close to constant one (the derivative of the linear function 
f(x) = x), but instead we see a linearly increasi 

P 

gfrror opfl 

%( 

In 
order to get a correct result, we need to subtract uo(z)/u, (2) t) 
from the reconstructed value. That means we actually need to 
reconstruct the original functionf(t) in order to compute its deriva- 
tive. But this would require another convolution with an interpola- 
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tion filter, which would be inefficient. A proposed way around this 
problem is to window the truncated Cost filter [9]. 

We conclude that a careful analysis of a filter is necessary 
before its use. 

Truncated Cost Filter applied to f(x) = x 
15- . I 

X 

FIGURE 2. We truncated the Cost filter at M=3. 
Since the coefficient ut is no1 zero, we end up with 
artifacts that make the filter useless. (The expected 
result is the constant function one.) 

3.3 An Approximation of the Error r: 

The error as computed in Equation 4 is more a theoretical 
result than a practical one, because we do not know the c,,, i. To 
get a fair idea abouhthe: behavior of the actual error, we suggest an 
approximation of rN. In practical applications the length M of the 
used filter w is usually small, since a larger filter width M results in 
reduced efficiency. Therefore, we conclude that the interval 
[ (i - M) T, (i + M) T] , in which all the & i are to be found, is 

relatively small. In addition, for MRI and CT data sets we found a 
behavior of the data sei.s in the frequency spectrum corresponding 
to the function 1 /co’ for small r. Therefore, we do not expect a lot 
of high frequencies, which would result in a fast changing function 
within a short interval. It is reasonable to assume that especially 
fcN+ t)(t) will not change much on a small interval of length 2M. 
We conclude, that: 

r max 
5~ [(i-M)T, (i+M)T] 

cv+ ‘WN) 

or. 

Tw+l) A4 -- c (k-4) ( w+lvk=-M N+‘)W(T-k) 

r;, i(‘) 2 max 
SE [(i-M’)T, (i+M)T] 

If we can approximate the (N+l)st derivative of the underly- 
ing function, then we can approximate thewactual error. Even if this 
is not possible, we can at least compute aN+ t to get an idea about 
the scale of the error. How well this error-bound approximates the 
actual error can be seen in Figure 3, where we used the derivative 
of the cubic interpolation filter to compute the derivative of a quin- 
tic polynomial. People usually model practical data sets with cubic 
polynomials locally. We have chosen a quintic polynomial since it 
is a supergroup of cubic polynomials and has higher variations and 
faster changing derivatives. 

Error of Cubic Derivative filter (CX = -1) applied to f(x) = x5 

600000 r- . . - . . . - ii: 1 

10 15 20 25 30 3.5 40 45 50 
X 

FIGURE 3. The absolute error of the cubic derivative 
filter with the parameter o! set to -1 applied to the 
polynomial of 5th degree. Also we have computed the 
error bound according to Equation 5 using the result 
from Table 1 in Section 4.2. We can see that our error 
bound is very tight and almost exact. The actual error is 
shown as error bars and the computed error-bound is 
drawn as a connected curve. 

4 OPTIMAL CUBIC FILTER 

Now, let us apply the methods we developed in Section 3 to 
the group of cubic filters. The group of cubic filters are described 
as: 

(a+2)(t]3- (o:+3)(t]*+l 0 <: (t( < 1 

h(t) = aIrI - 5alt1* + 8altl -4a 1 <ItI< 

0 2<ltl 
This class of filters is derived by Keys [Ill. He shows that for 

a = -0.5 this filter is a 3EF. He also uses a Taylor series expan- 
sion to derive this result. In Section 4.1 we will derive this result 
again, to demonstrate the power of our method. Bentum [2] devel- 
oped a continuous derivative filter originating from the cubic inter- 
polation filter. This filter is simply the derivative of the cubic 
interpolation filter, and can be written as: 

’ -3at*- loaf-8a -2<t<-1 

-3(a+2)t*-2(a+3)t -1 <t<o 

d(t) = 3(a+2)t2-2(a+3)t O<f<l 

3at* - 1Oat + 8a 
1 <r<2 

\ 
2<ltl 

0 

In section Section 4.2 we show that for this derivative fihter as 
well, a = -0.5 is optimal and produces a 2EF. 

4.1 The cubic interpolation filter 

The cubic filter has a window size of two, i.e. an overall 
extent of four. Therefore, we have four weights to consider. These 
are: 
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h(T) = (a+2)T3- (cr+3)T2+ 1 

h(T- 1) = - (a+ 2)T3 + (2a+3)T2-cXaz 

h(z+l) = az3-2a72+az 
(6) 

h(z - 2) = - at3 + aT* 

We are using these filter weights to compute the coefficients 
af from Equation 3. The results are summarized in Table 1. 

TABLE 1. Coefficients for the cubic interpolation filter 

h 

a2 I 272(2a+l)22(r-l)2 
I 

1 1 

at (evaluated only for 7-’ 

a = -0.5) 
,Ql-2T) (1 -z) 

I I I 

For a: we compute their sum and find that this coefficient is 
exactly one. This is an important result, for it tells us that cubic 
interpolation filters do not need to be normalized. This saves many 
computations and makes this class of filters more efficient and 
more attractive for practical applications. 

Considering a, we find, as Keys [ 111 did, that the cubic filter 
with a = -0.5, also known as the Catmull-Rom-Spline, has the 
best behavior in terms of numerical accuracy and makes this cubic 
interpolation filter at least a 2EF. Additionally, we find, that in the 
special case of z = 0.5 the cubic interpolation filter is, for any 
choice of a, at least a 2EF too. This means we interpolate exactly 
in the middle of two sampling points. If we neither choose a to be 
-0.5 nor interpolate in the middle of two sampling points, the cub$ 
interpolation filter represents a linear order filter (IEF) and at 
substituted in Equation 5 represents an error bound for this class of 
cubic filters. 

For fylrther analysis in the case of a = -0.5 or 7 = 0.5, we 
evaluate a2. For r = 0.5 it will not be zero, and therefore substi- 
tuted in Equation 5 presents an error approximation. In the case of 
a = -0.5, a2 will evaluate tx zero and in order to approximate 
the error, we need ho analyze u3 

Computing a3 for a = -0.5, we find that this coefficient is 
not zero and therefore, substituted in Equation 5, represents an 
error-‘bound for the Catmull-Rom cubic filter. Thus this filter is a 
3EF filter. We conclude that the choice ~1 = -0.5 results in an 
optimal cubic interpolation filter. This filter is optimal in terms of 
numerical accuracy. Keys presented this same result, except, that 
he did not provide an error-bound and did not mention the special 
case in which the offset z is set to -0.5. 

With 7 set to -0.5, we find that also a: evaluates to zero and 
we get an even better filter. This special discrete interpolation filter 
has the following filter coefficients: 

h(f0.5) = 9/16 

h(kI.5) = -l/l6 

For this filter, we find similarly ai(0.5) = -3T4/ I28 , which, 
again, we plug into our error approximation of Equation 5. There- 
fore, when both conditions hold (Z = 0.5 and a = -0.5 ), we 
have a 4EF filter. 

4.2 The cubic derivative filter 

Bentum [2] introduced the cubic derivative filter, but did not 
provide an analysis nor an analytical comparison of its perfor- 
mance for different values of the parameter a. Although this filter 
is really just a quadratic filter, we prefer to call it ‘cubic derivative’ 
filter, since its parent is the cubic interpolation filter, which is a 
very well known and commonly used class of filters. The four rele- 
vant weights in this case are: 

d(z) = 3 (a+2)T2-2(a+3)T 

d(7-1) = -3(cx+2)22+2(2a+3)2-a 

d(z+l)= 3aT2-4wr+a 

d(z-2) = -3a~~+2az 

These are the derivatives of the weights for the interpolation 
filter in Equation 6. As in the previous section, we compute the 
coefficients in Tab15 2 using Equation 3.ex 

To compute a,, we compute the sum of these weights and find 
that a: is indeed zero. In Section 3.2 we found that this is a 
requirement for good derivative filters, and we also saw that it is 
not obvious this condition holds. Here, we note once again that 
cubic filters are a well-defined class of filters. As showf in Section 
3.2, we need to normalize the other coefficients by ,a! . Note that 
for a = -0.5, the normalization step is a simple division by the 
sample distance T. This again saves time and the convolution 
becomes more efficient, making this class of filters useful for fast, 
accurate volume rendering. Especially in the case of T = 1 this 
division does not need to be performed. In the given literature we 
could not find a mention of this necessarydnormalization step. We 
also want to point out that in the case of f1 = 0, we really have a 
filter which computes a higher order derivative. TJis is the case, 
e.g. if 91 = -1.5 and z = 0.5 We not only find a, to be zero but 
also a2. That means that we actually recover at least the third 
derivative of the underlying fynction. A more thorough analysis, 
where one would compute a3 or higher, is beyond the scope of 
this paper. 

Interoolation coefficient a, 
, 

0.4 . 

0.2. a = -1.c 

-0.2 . 
a=0 

-0.4 ’ 

0 0.2 0.4 0.6 0.8 1 

FIGURE 4. Here we plot the coefficient ah of the cubic 
interpolation filter for varying a. a is d, -0.2, -0.4, - 
0.6, -0.8 and - 1. We set T to one. 

As is the case for the cubic interpolation fiiter, we discover 
that for a = -0.5 or z = 0.5 the coefficient a2 is zero, leading 
us to a derivative filter of higher order error. If 2one of these two 
conditions hold, we substitute the normalized a2 into Equation 5 
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ant find an error bound. In the case that a = -0.5, we substitute 
a,/T mto Equation 5 for an error bound. Since we normalize by 
r this filter is a 2NF. 

Again, we conclude that for the cubic derivative filter 
a = -0.5 is the optimal filter in terms of numerical accuracy. 
Note that we lose one degree of accuracy for the first derivative fil- 
ter. The cubic interpolation filter is a 3EF. However, the cubic 
derivative filter is only a 2EF. 

In the case that a # -0.5 , we find that both filters are linear 
error filter (IEF). For a better perspective we plotted the error coef- 
ficients of the error term in Equation (5). For the interpolation filter 
we plotted a: for different a in Figure 4 and for the derivative fil- 
ter we plotted a.$/a;’ m Figure 5. We find that the actual error 
term is larger in magnitude for the derivative filter. 

TABLE 2. Coefficients for the cubic derivative filter. 

d 
aI 1+ (2a+ l)(-6T2+65-l 

These are important observations, for in order to obtain as 
reliable data for derivatives as for the interpolated signal, we need 
to apply more sophisticated filters. Furthermore, if we use the same 
a for interpolation and derivative filter as Marschner and Lobb 
[15], the error introduced by the derivative filter is larger. 

Derivative coeffjcient a?/a, 

0.4 

FIGURE 5. We plot the normalized coefficient 
ad/ad of the cubic derivative filter for varying a. 
a*isd,-. -. -. -. 02, 04, 06, 08and-l.WesetTtoone. 

5 EXPERIMENTAL RESULTS 

For our experiments we used an analytic data set and a MRI 
data set. The synthetic data set is the same function as the one used 
by Marschner and Lobtl [15], sampled into a 40 x 40 x 40 volume 
lattice. A high definition ray caster, sampling the volume at a step 
size of 0.05 voxel lengt.hs, was employed to display the function’s 

opaque isosurface at 0.5 of the maximum function value. In con- 
trast to the images given in [15], Figure 6 focuses on the: center 
section of the function, where the distinct effects induced by the 
various interpolation-derivative filter pairings are most apparent. 

In Figure 6.1 through Figure 6.9 we rendered this data set 
with varying a for interpolation and derivative filters. Along the 
rows we decrease a for the interpolation filter from top 
(a = -0.2 :I to bottom (a = -1 ). Along the columns we decrease 
a for the derivative filter from left (a = -0.2 ) to right 
(a = -1 ). We find that the differences between rows are not as 
striking as the differences between columns. That demonstrates our 
findings in Section 4.2, where we concluded that the derivative fil- 
ter has more influence on image quality than the interpolation filter. 
In order to be able to compare interpolation filters, we suggest to 
fix the derivative filter, preferably one with error that is neghgeable 
compared to the errors in the interpolation filter. 

The sec:ond data set is an MRl of a human head, also used by 
Bentum [2]. Here, we fixed the interpolation filter to the optimal 
cubic filter and varied a for the derivative filter. In 
Figure FIGURE 7.. 1 through Figure FIGURE 7..3, we find that the 
best image is achieved when a is set to -0.5. That is exactly what 
we expected from our analysis in Section 4.2. Figure FIGURE 8..1 
through Figure FIGURE 8..3 show the same set of filters applied to 
a small section of the brain and rendered from a close-up view. 

6 FUTURE GOALS 

In many applications, especially volume rendering, we want 
to both reconstruct the underlying function and/or its derivative 
and also resample it on a new grid. Therefore, it is necessary to 
study the overall error expressed in the & error norm. We are 
working on developing better tools to study this error. Eventually, 
we want to come up with techniques similar to the ones presented 
in this paper that will allow us to classify different filters and also 
to quantify them, efficiently computing their L2 error. 

In terms of filter design, we can use our tools to design filters 
of arbitrary order. Setting the coefficients in Equation 2 to zero for 
a given N, we end up with N linear equations for 2M+I coeffi- 
cients. We can solve this linear system, matching N and M appro- 
priately, and we find a NEF. It would be interesting to study how 
this filter behaves in terms of the offset T, for it woulcl enable us to 
construct filters of arbitrary accuracy. Similar to the adaptive filter 
design of Machiraju et al [13], we can use these different filters 
adaptively in different areas of the function. Knowing the error, 
caused by convolving a particular filter with a particular applica- 
tion, we want to find ways to adapt the type of filter we use, 
according to a given error tolerance. 

We plan to extend the techniques describes in Section 3.2 for 
higher order derivatives and to the evaluation of filters others than 
the cardinal cubic splines, such BC splines [ 161 and other optimal 
filters [4]. 

It is also important to study the behavior of different filters, 
when applied to rapidly changing functions. (Such behavior could 
be caused by noise.) Our analysis remains valid, except for the 
error estimation in Equation 5, where we assumed slowly changing 
functions. 

7 SUMMARY 

In this paper we applied a Taylor series expansion to the con- 
volution sum. This resulted in an alternative representation of the 
convolution sum which lead to a qualitative and quantitative com- 
parison of both reconstruction and derivative filters. We found that 
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the normalization of the filter coefficients is important for accurate 
reconstruction. 

We then applied these techniques to the analysis of the class 
of cardinal cubic splines. We derived several special filters, which 
are numerically optimal within this class. Especially, we concen- 
trated our efforts on interpolation and derivative filters and found 
that, when both are applied to a function, the error introduced by 
derivative filters are more significant than those caused by interpo- 
lation filters. 

We expect the techniques developed here to be applicable to 
the design and evaluation of other reconstruction and high order 
derivative filters. 
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Derivative: a = -0.2 Derivative: a = -0.5 Derivative: a = -1.0 

FIGURE 6. Marschner Image (3x3) FIGURE 7. Head 1,2,3 
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Derivative: ~1 = -0.5 

FIGURE 6. Marschner Image (3x3) 
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